Aging, Cohorts, and the Stability of Sociopolitical Orientations Over the Life Span

Duane F. Alwin; Jon A. Krosnick

Stable URL:
http://links.jstor.org/sici?sici=0002-9602%28199107%2997%3A1%3C169%3AACATSO%3E2.0.CO%3B2-S

The American Journal of Sociology is currently published by The University of Chicago Press.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/ucpress.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of scholarly journals. For more information regarding JSTOR, please contact jstor-info@umich.edu.
Aging, Cohorts, and the Stability of Sociopolitical Orientations over the Life Span

Duane F. Alwin
University of Michigan

Jon A. Krosnick
Ohio State University

This article examines three hypotheses about the relation between age and the stability of sociopolitical attitudes. The hypotheses are (1) the impressionable-years hypothesis, which states that the youngest adults have the least stable attitudes; (2) the aging-stability hypothesis, that attitude stability increases with age; and (3) the hypothesis that symbolic attitudes are more likely to show distinctive life-cycle patterns of attitude stability than less symbolic ones. The hypotheses are tested using nationally representative panel data from the National Election Study (NES). When results are aggregated over 50 different measures of attitudes, they reveal that in general the youngest adults have the lowest levels of attitude stability, although the difference is not significant. Beyond this, the aggregated data show very few systematic age-related differences, and very few life-span differences in attitude stability are related to the nature of the attitude object; that is, symbolic attitudes do not seem to differ systematically from nonsymbolic attitudes in the relationship of age to stability. However, the examination of intra-cohort patterns of change in stability, using a comparison of stabilities in political party identification across the 1956-1958-1960 and the 1972-1974-1976 NES panel studies, reveals systematic differences that provide clear support for the impressionable-years and aging-stability hypotheses. The decomposition of the stabilities in this measure into components representing "direction" and "intensity" of political partisanship suggests that the intensity component of partisan attitudes declines in stability in old age, whereas the stability of the direction of party loyalties either increases or persists with age. The prevailing model of political socialization—that persons become more "persistent" with age—is reevaluated on the basis of these findings.

1 Portions of this paper were presented at the 1988 meetings of the International Society of Political Psychology in Secaucus, N.J. The research reported here was

© 1991 by The University of Chicago. All rights reserved.
0002-9602/92/9701-0007$01.50

AJS Volume 97 Number 1 (July 1991): 169–95

169
INTRODUCTION

It is widely recognized that processes of social change and processes of individual change are inexorably intertwined. People may change because aspects of social experience change, and the ways in which people change may influence the nature of society. However, little is known about the relationship between individual (ontogenetic) and historical (generational) development (see Nesselroade and Baltes 1974). Part of the problem is methodological and part is theoretical. For example, it is extremely difficult, if not impossible, to disentangle these processes empirically through the comparison of age groups in cross-sectional measurement. This confounds residues left by unique "cohort" experiences and "aging," and the comparison of single birth cohorts over time confounds aging with "history" (Converse 1976; Riley 1973; Glenn 1981). Moreover, theories about social change generally ignore processes of individual change, and theories of human development and change tend to ignore issues of social change.

An exception to the lack of available theory about the relationship between social and individual change are theories of "aging-stability" (Glenn 1980), "generational succession" (Carlsson and Karlsson 1970; Mannheim 1952; Ryder 1965), and "generational persistence" (Sears 1981, 1983, 1987). From the perspective of these theories, peoples' attitudes are considered to be shaped by socialization experiences early in adulthood and to remain relatively resistant to change after this time. Differences between generations in terms of social and political circumstances and formal socialization experiences produce potentially different attitudinal perspectives. Thus, differences between generations or cohorts may produce social change through processes of cohort succession, that is, the replacement of old cohorts by new ones.

The distinctiveness of certain political eras and the tendencies toward the domination of political parties at the national level during particular periods provide a basis for the assumption that birth cohorts achieving political awareness during the ascendancy of one particular political party

 supported by grant R01-AG04743-04 to Duane Alwin from the National Institute on Aging. We thank the Inter-University Consortium for Political and Social Research for providing access to the National Election Study data used here, and we gratefully acknowledge the assistance of Frank Mierzwia and Lynn Dielman in research and manuscript preparation. We also wish to thank Ronald P. Abeles, Richard T. Campbell, Philip E. Converse, Norval D. Glenn, M. Kent Jennings, and David O. Sears for helpful suggestions on earlier drafts of this material. Direct correspondence and reprint requests to Duane F. Alwin, Institute for Social Research, University of Michigan, Ann Arbor, Michigan 48106-1248.
will be affected by that differential popularity of parties and candidates. Although evidence for cohort or "generational" effects on partisan attitudes and behavior is to be found in only meager amounts, the use of this theoretical interpretation to help understand social change is widespread in the social sciences (Abramson 1983; Riley 1987; Sigel 1989).

There are some empirical findings that are suggestive of support for these ideas. There is widespread support, for example, for the idea that most (but by no means all) social change progresses slowly. In a variety of behavioral domains, such as fertility behavior, marriage, divorce, and migration, social trends are often gradual. This is also true of changes in social and political attitudes. Numerous studies have documented the gradual nature of changes in a wide range of social attitudes, such as attitudes toward free speech, confidence in government and other major social institutions, attitudes toward racial groups, gender-role attitudes, attitudes toward marriage, divorce, abortion, and child rearing, identification with the major political parties, religious orientations, and social values (see review by Alwin [1991]). Such patterns are consistent with, but do not substantiate, the view that ascribes these gradual changes in aggregate societal attitudes to processes of cohort replacement.

Confirmation of cohort-replacement interpretations of social change, however, requires much more than showing that social change occurs gradually. It requires systematic evidence that "cohort effects" actually exist, net of important compositional differences (see, e.g., Alwin 1990), and it requires some evidence that such distinctive residues of cohort experiences persist over time (see Glenn 1980). While it is difficult to separate the influences of aging, cohort, and period influences, it is possible to empirically evaluate the extent to which persons become increasingly stable after some point early in their lives, a hypothesis Glenn (1980) refers to as the aging-stability hypothesis. If such stable tendencies emerge soon after the early adult experiences of a particular set of cohorts or generation, then differences between cohorts may be quite durable in the face of social change. If, on the other hand, individuals are entirely unstable in their orientations over biographical time, or if periods of individual-level instability fluctuate over the life course, then it may be impossible to detect such historical imprinting of cohorts, even if it may have occurred. This second view is consistent with the arguments that people maintain attitudinal flexibility well beyond the earliest socialization experiences (Brim and Kagan 1980; Gergen 1980; Lerner 1984) and that societal-level changes are mere reflections of individual-level changes, instead of being due to unique differences between new and old cohorts (Sears 1981).

There is mounting evidence suggesting that, after a period of relative
instability of sociopolitical attitudes in early adulthood, levels of stability can be quite high throughout the remainder of the life cycle (see Alwin, Cohen, and Newcomb 1991; Marwell, Aiken, and Demerath 1987; Fendrich and Lovoy 1988; Jennings and Niemi 1981). This growing support for the aging-stability hypothesis is, however, often based on small, nonrepresentative samples, and research is often limited to a narrow range of sociopolitical attitudes and sociohistorical experience. We need a broader examination of this issue with more nationally representative samples and a broader range of attitude content before we can make firm generalizations about such issues of generational persistence. Past investigations of the relation of aging and attitude stability using “synthetic cohort” models based on nationally representative panel studies are scarce, and the results of this research are often ambiguous (e.g., Sears 1981).

A second important, unresolved issue in the literature on political socialization is whether this aging-stability model applies equally to all attitude dispositions. Glenn (1980) suggests, for example, that the attitude issues that are the most central in terms of importance are the most stable over the life span. Sears (1969, 1975, 1981, 1983, 1987, 1988) developed a theory of symbolic politics in which he argues that sociopolitical attitudes differ in the extent to which they develop early in life through preadult socialization, becoming affectively linked at an early age to a variety of diffuse political symbols. Attitudes thus range in their content along a continuum from highly “symbolic” to “nonsymbolic” (see also Lau, Brown, and Sears 1978; Sears and Citrin 1985; Kinder and Sears 1985). Symbolic attitudes differ from nonsymbolic attitudes in their stability over the life span. Symbolic attitudes are developed through conditioning processes in which attitudes develop a strong affective basis, with little informational or cognitive content. In contrast, nonsymbolic attitudes are assumed to be formed during adulthood, primarily as a consequence of knowledge acquisition and information integration. As a result, symbolic attitudes are thought to be highly stable and resistant to change over time, whereas nonsymbolic attitudes are more likely to change as the result of persuasive arguments and political events.

In this article we examine (1) the relationship between levels of attitude stability and age, examining several hypotheses regarding the age-related differences in attitude stability, (2) the relationship between attitude stability and the symbolic versus nonsymbolic content of the attitude object, and (3) the relationship of age to intracohort changes in the directional and intensity components of partisan attitude stability. Using three-wave panel data, we estimate the relative stabilities of attitudes for different age groups and use these data to examine hypotheses about the life-course trajectories of individual change.
Stability of Orientations over the Life Span

RESEARCH STRATEGY

In this article we define the stability of attitudes in terms of their correlational stability within age groups or cohort categories. By estimating the differences in stabilities by age and cohort categories, we hope to evaluate the life-cycle patterns in attitudinal stability over the life span. The general hypothesis guiding the analysis is that attitude stability will be lowest during the impressionable years of young adulthood, growing in magnitude over the life cycle, with a possible decrement in the growth of attitude stability in the later years.

Attitude change is, however, confounded with unreliability of measurement in over-time data. That is, the lack of correlation between measures of a variable at more than one time point may reflect lack of stability (or change) in attitudes, or it may reflect unreliability of measurement, or both. Thus, following Converse and Markus's (1979) use of simplex models (see also Achen 1975; Alwin 1988a; Heise 1969;ish Jöreskog 1970), we apply structural-equation models to disentangle the extent of the true instability of attitudes from the extent of unreliability of measurement. This is important, not only because of the need to separate unreliability from "true" change but also because there is variation in attitude-measurement reliability for the different age groups (see Alwin 1989; Andrews and Herzog 1986). Therefore, in order to obtain the best possible estimate of age-related attitude stabilities, we employ the techniques referred to above to obtain a better purchase on aspects of the age–attitude stability relation than has been heretofore reported.

Although we define the concept of stability in correlational terms, we actually apply covariance structure modeling strategies to covariance rather than to correlation matrices. Since Heise's (1969) important article on the analysis of simplex models using correlation matrices, there has been a debate about how the latent variables should be scaled (see Wiley and Wiley 1970; Cudeck 1989). The analysis of correlations instead of covariances restricts the researcher to standardized latent variables and ignores the actual variances of the variables. In theory, the analysis of covariance matrices imposes fewer constraints on the data. To us this suggested that we try employing both types of models and compare their standardized estimates of stabilities, but, when we did so, the differences proved to be trivial.

We present our results in three parts. We begin by summarizing the results of a broad-based analysis of the relation of age to attitude stability, as defined above, for attitude measures, each assessed in a three-wave panel study with two-year remeasurement intervals. Second, these results lead to the examination of patterns of stability with respect to whether
American Journal of Sociology

the attitude objects represent symbolic or nonsymbolic issues. Recent theorizing has suggested that symbolic attitudes are more likely than nonsymbolic ones to follow the expected life-cycle patterns. These hypotheses are tested by analyzing the relation of age to attitude stability within categories of attitude object. Third, the stability of political party identification is analyzed separately, in part because it is the prototypic symbolic attitude, and in part because it is the sole variable for which we have information on stability across the two panel studies. These results are unique, as they represent the only systematic array of changes in levels of stabilities over biographical and historical time. In this context we investigate the question of the stability of the directional versus intensity components of party identification.

DATA AND MEASURES

To investigate the above issues, we use data from two major sources—the 1956-1958-1960 and 1972-1974-1976 National Election Study (NES) three-wave panel surveys (Campbell et al. 1971; Center for Political Studies 1979). We utilize all attitude measures—50 in all—for which complete three-wave data were available.

Samples

The data come from two nationally representative three-wave panel studies of the U.S. adult population conducted in 1956-1958-1960 and 1972-1974-1976. These studies were part of the National Election Studies carried out at the University of Michigan, in which cross-sections of Americans were interviewed to track national political participation. In brief, in presidential election years (except 1954), a sample is interviewed before the election and reinterviewed immediately afterward. In the nonpresidential election years, only postelection surveys are conducted. Data are obtained from face-to-face interviews with national full-probability samples of all citizens of voting age in the continental United States, except for those on military reservations, using the Survey Research Center's multistage area sample (see Miller, Miller, and Schneider 1980).

In this article we use panel studies carried out within this design in 1956-1958-1960 and 1972-1974-1976. Of the respondents interviewed in 1956, 1,256 were reinterviewed in 1958 and again in 1960. Of the respon-

2 There was a third NES panel study, conducted with the 1980 election study, in which respondents were reinterviewed at four-month intervals. Because of the incompatibility of this design with the two-year intervals of the 1950s and 1970s NES panels, we have excluded the 1980 data here. Our study of that data has been presented in a separate paper (Krosnick and Alwin 1989).
Stability of Orientations over the Life Span

dents interviewed in 1972, 1,320 were reinterviewed in 1974 and again in 1976. We utilize the following categories of age: 18–25, 26–33, 34–41, 42–49, 50–57, 58–65, and 66–83, assessed in the initial survey year. Thus, although we estimate stability information for these age categories, the data for a particular panel study are essentially cross-sectional with respect to our stability estimates.3

Unfortunately, we have only two time periods represented in our data, the mid-1950s and the early 1970s. Thus, we can only speculate about whether there are period effects operating on our stability estimates. However, we are able to compare age differences in stability across cohorts within a panel, as well as compare aging differences across time within cohort categories. As we argue below, the consistency of our findings cannot easily be explained by reference to period effects. Finally, we are able to examine separately two distinct aspects of the stability of political partisanship—direction and intensity—and in so doing address the question of whether the strength of these attitude components increases or decreases with age.

Measures

Our analyses focus on attitudes that were measured on three occasions in each of the 1956–60 and 1972–76 studies. In each study, at each occasion of measurement, respondents were asked identical questions regarding several categories of political attitudes: (1) political efficacy and alienation, (2) attitudes toward social groups (such as labor unions, the military, the police, whites, Negroses, Republicans, Democrats, liberals, and conservatives), (3) attitudes on domestic policy issues, for example, on the push for civil rights and the desegregation of schools, federally guaranteed employment, protecting the rights of people accused of committing crimes, and on the role of women in the society, (4) ideological liberal-conservatism, (5) political candidate evaluations, and (6) political party identification.4

3 In the 1950s cohorts the youngest cohort contains only 21–25-year-olds because only adults of voting age were interviewed. This means that the youngest 1950s cohort is slightly older than the comparable cohort in the 1970s panel, which contains 18–25-year-olds. We are grateful to Kent Jennings for making us aware of this problem. One implication of this for our research here is that we are likely to err in a direction against our hypotheses when we compare this cohort category (those 21–25 in 1956-1958-1960) with others, since, on the basis of the theoretical predictions of several of the models given above, it is likely to have higher levels of stability than a category containing the full range of persons aged 18–25. We can think of no reason to exclude the youngest respondents in the 1970s panel.

4 Because of the sheer quantity of information regarding these 50 measures, we do not present the details of question wording, the nature of response categories, response
In addition to analyzing age differences in stability for all of the available attitude measures, we also present a detailed analysis of the stability of distinct aspects of partisanship, making use of the party-identification variable. We do so primarily because it is the sole measure replicated across the two panel studies and therefore the only question that is precisely appropriate for our present purposes. Most of the theorizing to date regarding the trajectory of attitude stability over the life cycle has been phrased with respect to symbolic dispositions, such as party identification (see Sears 1983). In addition, the major discussions regarding life-cycle versus cohort interpretations of change in attitudes have occurred with respect to party loyalty and its intensity (Converse 1976; Abramson 1983).

Political partisanship or party loyalty is not an attitude in the conventional sense. It reflects a wider-ranging, and possibly deeper, set of orientations. It measures a person's more fundamental values, his or her beliefs about where a particular party stands on the issues, and the extent to which parties seek to attract persons with particular attitudes. Parties run campaigns on behalf of political candidates and parties have platforms. Thus, an identification with a political party reflects a highly symbolic attitude. The question measuring partisanship in the NES surveys is the following: "Generally speaking, do you usually think of yourself as a Republican, a Democrat, an Independent, or what? (If Republican or Democrat) Would you call yourself a strong (Republican/Democrat) or a not very strong (Republican/Democrat)? (If Independent, no preference, or other) Do you think of yourself as closer to the Republican or to the Democratic party?" We use this measure to assess the direction and intensity of political partisanship (see Converse and Pierce 1987).

METHODS OF ANALYSIS

We take the position that panel data can make an important contribution to the study of attitude change and stability over the life cycle. Unfortunately, simple correlations of measures replicated over time confounds attenuation due to unreliability of measurement and true attitude change. Thus, we must employ some method to separate unreliability from attitude change (see Alwin 1988a). In this regard, serious flaws exist in previous attempts to estimate the stability of sociopolitical attitudes at different stages in the life cycle. In Sears's (1981) work, for example, attitude stability is estimated by means of bivariate correlations of over-

codes, and all of the details of our results separately by question. Such a methodological description may be obtained from the first author on request.
time measures, without corrections for random measurement error. But because reliability obviously varies as a function of age, attitude stabilities should be estimated free of random measurement error.

We employ a class of just-identified simplex models that specify two structural equations for a set of three over-time measures of a given variable \(y_t \):

\[
y_t = \tau_t + \epsilon_t,
\]

\[
\tau_t = \beta_{t,t-1} \tau_{t-1} + \nu_t.
\]

The first equation represents a set of measurement assumptions indicating (1) that the over-time measures are assumed to be \(\tau \)-equivalent, except for true attitude change, and (2) that measurement error is random (see Alwin 1988a). The second equation specifies the causal processes involved in attitude change over time. This model assumes that the system is in dynamic equilibrium and that this equilibrium can be described by a lag-1 or Markovian process in which the distribution of the true variable at time \(t \) is dependent only on the distribution at time \(t - 1 \) and not directly dependent on distributions of the true variable at earlier times.\(^5\)

Estimates of these structural-equation parameters help assess the stability and reliability of reports of attitudes in the NES panel data.\(^6\) In order to estimate such models, we must make some assumptions regarding the measurement-error structure and the nature of true attitude changes (Alwin 1989). All estimation strategies available for such three-wave data require a lag-1 assumption regarding the nature of true attitude change, but they differ in their approach to assumptions about measurement error. One approach assumes equal reliabilities over occasions of measurement (Heise 1969). This is often a realistic assumption and may be useful, especially when the attitude process being assessed is not in dynamic equilibrium. Another approach to estimating the pa-

\(^5\) By dynamic equilibrium we simply mean that the variances of the variable are constant over time (see Bereiter 1962). If this situation does not hold, then this type of simplex model may not be applicable (see Rogosa 1988). We do not mean to imply by this that the stability coefficients, \(\beta_{21} \) and \(\beta_{32} \), are assumed to be equal.

\(^6\) This, of course, depends on the robustness of the assumptions underlying the simplex model. Perhaps the most risky assumption in this particular case is the Markovian assumption, which puts rather restrictive limitations on the nature of what can be considered “true change.” In this context, only change that contributes to monotonic and linear change over the three time points is true change. This essentially “correlational” nature of change may not capture what we might otherwise like to think of as change when the system is not in dynamic equilibrium. Change that does not fit with this model is considered measurement error, at least to the extent it is random with respect to the true distribution.
American Journal of Sociology

Parameters of this model is to assume constant error variances rather than constant reliabilities (Wiley and Wiley 1970). This is often seen as a less restrictive assumption than that made by the Heise model, but it can produce erroneous estimates if the true distributions increase or decrease in variability over time (Alwin 1988a). We analyzed our data in both ways using Jöreskog and Sörbom's (1986) LISREL VI computer program and found results that were virtually identical for standardized parameters.

AGE AND ATTITUDE STABILITY

Using all the available over-time attitude measures from the two NES panels, we estimated standardized coefficients of stability separately by age group. We have summarized these results, averaged over the set of 50 attitude measures, in table 1. In this table, we present three related quantities pertaining to the examination of life-cycle processes in attitude stability. First, we present the average sample estimates of the zero-order correlations of attitudes across the two-year remeasurement interval of the NES panels. Second, we present the average estimates of reliability for the seven age groups. And third, we present the average estimated two-year stability coefficients in standard form. In all three cases we also present the standard errors of these means.

There is no agreed-upon set of procedures in the statistical literature for examining the differences in average levels of attitude stability we present in table 1. Perhaps the most severe problem is that the two stability estimates for a given variable (time-1 to time-2 and time-2 to time-3 stabilities) are not independent. We have examined these differences using multivariate analysis of variance, or MANOVA, which permits multiple nonindependent dependent variables (see Anderson 1984). Using this procedure we consider the seven age categories as the "treatments" in our analysis. We consider the t-1 to t-2 stability and the t-2 to t-3 stability as multiple indicators of the level of stability for a given age group. Then we consider the 50 separate attitude measures as the cases that are observed within treatment levels.

7 Because of space limitations, these results are not presented here. Detailed tables of our results may be obtained from the first author on request.

8 These correlational data are comparable with the type of information used by Sears (1981) to examine these issues.

9 We use standardized coefficients here because different units of measure were used in these 50 different indicators of political orientations. Thus, we average the standardized results only.

10 Statistical tests in this analysis involve treating stability coefficients (and, in table 1, reliability and correlation coefficients) as dependent variables within the framework.
Stability of Orientations over the Life Span

TABLE 1

Average Zero-Order Correlation, Attitude Stability, and Attitude Measurement Reliability Coefficients by Age: 1950s and 1970s NES Panel Studies

<table>
<thead>
<tr>
<th>Age group:</th>
<th>Zero-Order Correlations</th>
<th>Reliability of Measurement</th>
<th>Stability Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SE</td>
<td>Mean</td>
</tr>
<tr>
<td>18–25</td>
<td>.442</td>
<td>.021</td>
<td>.552</td>
</tr>
<tr>
<td>26–33</td>
<td>.464</td>
<td>.019</td>
<td>.544</td>
</tr>
<tr>
<td>34–41</td>
<td>.496</td>
<td>.019</td>
<td>.538</td>
</tr>
<tr>
<td>42–49</td>
<td>.497</td>
<td>.020</td>
<td>.552</td>
</tr>
<tr>
<td>50–57</td>
<td>.462</td>
<td>.019</td>
<td>.578</td>
</tr>
<tr>
<td>58–65</td>
<td>.469</td>
<td>.019</td>
<td>.542</td>
</tr>
<tr>
<td>66–85</td>
<td>.429</td>
<td>.022</td>
<td>.513</td>
</tr>
<tr>
<td>All</td>
<td>.466</td>
<td>.020</td>
<td>.546</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Global test:</th>
<th>Zero-Order Correlations</th>
<th>Reliability of Measurement</th>
<th>Stability Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multivariate F-statistic</td>
<td>1.162</td>
<td>1.670</td>
<td>1.094</td>
</tr>
<tr>
<td>df</td>
<td>12,684</td>
<td>18,965</td>
<td>12,684</td>
</tr>
<tr>
<td>P</td>
<td>.307</td>
<td>.039</td>
<td>.362</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Youngest vs. all others:</th>
<th>Zero-Order Correlations</th>
<th>Reliability of Measurement</th>
<th>Stability Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multivariate F-statistic</td>
<td>1.131</td>
<td>2.079</td>
<td>1.930</td>
</tr>
<tr>
<td>df</td>
<td>2,342</td>
<td>3,341</td>
<td>2,342</td>
</tr>
<tr>
<td>P</td>
<td>.324</td>
<td>.103</td>
<td>.147</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Oldest vs. all others:</th>
<th>Zero-Order Correlations</th>
<th>Reliability of Measurement</th>
<th>Stability Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multivariate F-statistic</td>
<td>2.034</td>
<td>2.873</td>
<td>.798</td>
</tr>
<tr>
<td>df</td>
<td>2,342</td>
<td>3,341</td>
<td>2,342</td>
</tr>
<tr>
<td>P</td>
<td>.132</td>
<td>.036</td>
<td>.451</td>
</tr>
</tbody>
</table>

In the lower part of the table, we present the results of three multivariate statistical tests carried out within the MANOVA procedure. First, we performed a global test of any and all differences among the quantities in a particular column of the table. This hypothesis is theoretically less interesting than subsequent ones, but it does provide an important basis of a type of meta-analysis. It is not exactly clear what assumptions are involved in treating derived statistics as dependent variables in a second-level analysis, especially since the 50 attitude measures are not independent, in a sampling sense. Thus, we rely on these tests mainly as a rough indication of the magnitude of the effects. The information on statistical tests is given herein not as a basis for generalization to some known universe of attitude measures but to help assess the relationship between age and stability.
from which to derive additional comparisons. Next, we provide a test, based on MANOVA procedures for planned comparisons, in which we examine the significance of the difference between the youngest age group and all others. This embodies a test of the impressionable-years hypothesis in our aggregated results. Finally, we provide a test, again based on MANOVA procedures, for the difference of the oldest age group versus all younger ones. This permits a test of Sears's (1981) hypothesis that attitude stability declines in old age.

The major differences by age that appear to be substantial enough in this table to be interpretable are the estimates of the reliability differences by age. The results indicate that reliability seems to decline in old age. The effect of this on over-time correlations is seen in the average zero-order correlation estimates by age. The lowest average zero-order correlation is for the oldest age group, although these differences only approach statistical significance \(P = .13 \). Regardless, the results for age-related differences in both the zero-order correlations and the reliability of measurement are quite compatible with the results reported by Sears (1981).

In the column (col. 5) where we show the age differences in attitude stability averaged over all available measures, we see that stability levels are lowest in the youngest age group and gradually increase through the middle-age categories. Thereafter, attitude stability seems to remain at a relatively high level of average stability into old age. The estimated stability coefficient for the youngest age group was not significantly lower than the average of the remaining age groups, although this difference approaches statistical significance \(P = .15 \). In terms of the estimated magnitudes of stability, the levels of reported stability are quite compatible with theoretical expectations, that is, the lowest level of stability is in the youngest age groups, with subsequent increments in stability through old age. There are no other seemingly important differences among these averaged estimated stabilities. Specifically, there were no indications of Sears's (1981, p. 199) suggestion that attitude stability decreases in old age.

On the basis of these aggregate results, there is only weak support for the hypothesis that young adulthood is the period of greatest mutability of social attitudes over the life span. There is some weak support for the hypothesis that attitude stability increases after young adulthood, but there is no marked decrease in attitude stability in the oldest age groups. In fairness to Sears's (1981) speculation that older age represents a second period of increased flexibility of attitudes, however, we should point out that the results we have discussed so far refer to a wide variety of types of attitude measures, from policy attitudes to party identification. That is, we fail to distinguish an important dimension of the phenomenon—the nature of the attitude object. This is important for any examination of
Sears's (1983) theory because he argued that the most persistent are those attitudinal responses that are more symbolic in nature—those that are more affectively tied to the cognitive structure and more resistant to change. In the following analysis, we control for this by examining attitude stability and age in various types of attitudes. Later we also analyze the prototypic symbolic disposition, political partisanship, as measured by the NES questions on party identification.

ATTITUDE OBJECT AND THE AGING-STABILITY RELATIONSHIP

Sears (1983, pp. 83–84) has developed a theory of symbolic politics, in which political attitudes can be placed along a continuum defined in terms of the degree of their ego-relatedness and resistance to change. Symbolic attitudes are those acquired relatively early in life, with strong affective components and little informational content. They are expected to be highly stable during adulthood. Political attitudes of a less symbolic character are presumed to be formed later in life and to be more likely to change in response to environmental pressures and events in the objective political world. In keeping with these theoretical ideas, Sears (1983) ordered attitude objects in terms of their expected degree of stability, from most to least symbolic, as follows: (1) political party identification and reactions to political candidates, (2) liberal/conservative ideological orientations, (3) attitudes toward social groups, (4) attitudes on racial policy issues, (5) attitudes on nonracial policy issues, and (6) attitudes concerning political efficacy and alienation.

Following such reasoning, one might suspect that the conclusions we have drawn in the aggregate analysis of attitudes may not generalize to all attitudinal objects. Such considerations may account for some variability in patterns of stability over the life course. Specifically, attitudes such as party identification, which refer to diffuse political symbols, are presumably more deeply rooted in the cognitive and affective structure of the individual—a more symbolic disposition. On the other hand, most of the attitudes assessed in the analysis above are considerably less symbolic. For example, attitudes toward some policy issues, which Sears argues are formed in adulthood, have lower levels of ego involvement and are more likely to change in response to persuasive arguments and political events. Similarly, attitudes expressing political efficacy and alienation may also be more likely to change over the life course because of the influences of variation in experiences in both biographical and historical time.

For purposes of this analysis we separated attitudes toward parties and candidates in Sears’s (1983) first category, which resulted in our comparing seven categories. Table 2 presents averaged two-year stan-

TABLE 2

Average Two-Year Stability Coefficients by Age and Attitude Object: 1950s and 1970s NES Panel Studies

<table>
<thead>
<tr>
<th>Age group:</th>
<th>Policy (8)</th>
<th>Efficacy (13)</th>
<th>Groups (13)</th>
<th>Race (2)</th>
<th>Party (6)</th>
<th>Candidate (5)</th>
<th>Ideology (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SE</td>
<td>Mean</td>
<td>SE</td>
<td>Mean</td>
<td>SE</td>
<td>Mean</td>
</tr>
<tr>
<td>26–33</td>
<td>.844</td>
<td>.093</td>
<td>.863</td>
<td>.061</td>
<td>.897</td>
<td>.060</td>
<td>.902</td>
</tr>
<tr>
<td>34–41</td>
<td>.890</td>
<td>.072</td>
<td>.945</td>
<td>.043</td>
<td>.974</td>
<td>.024</td>
<td>.940</td>
</tr>
<tr>
<td>42–49</td>
<td>1.001</td>
<td>.070</td>
<td>.977</td>
<td>.072</td>
<td>.854</td>
<td>.045</td>
<td>.931</td>
</tr>
<tr>
<td>50–57</td>
<td>.860</td>
<td>.049</td>
<td>.919</td>
<td>.074</td>
<td>.947</td>
<td>.100</td>
<td>.834</td>
</tr>
<tr>
<td>58–65</td>
<td>.899</td>
<td>.064</td>
<td>.887</td>
<td>.068</td>
<td>1.044</td>
<td>.074</td>
<td>.709</td>
</tr>
<tr>
<td>66–83</td>
<td>1.012</td>
<td>.122</td>
<td>.891</td>
<td>.090</td>
<td>.901</td>
<td>.071</td>
<td>1.192</td>
</tr>
<tr>
<td>All</td>
<td>.915</td>
<td>.079</td>
<td>.897</td>
<td>.068</td>
<td>.939</td>
<td>.070</td>
<td>.918</td>
</tr>
</tbody>
</table>

Global test:

- **Multivariate F-statistic** ...
- **df** 12,96
- **P** .538

Youngest vs. all others:

- **Multivariate F-statistic** ...
- **df** 2,48
- **P** .886

Oldest vs. all others:

- **Multivariate F-statistic** ...
- **df** 2,48
- **P** .369

Note.— Numbers in parentheses are the numbers of items in the categories.
standardized stability coefficients and their standard errors, comparable with those given in table 1, across seven age groups for each of these seven attitude-object categories. In the table we also present the results of the multivariate F-tests of statistical significance of differences among these coefficients. In the lower part of table 2 we present a global test of whether there are any statistically significant differences among any and all age groups. The “youngest versus all others” test addresses whether the youngest age group’s stability is significantly different from the stability of all the other age groups combined. And the “oldest versus all others” comparison does the same thing for the oldest age group’s stability as compared with that of all the other age groups combined.

The results we show in this table make a remarkably powerful statement. It is clear from these several tests that there seems to be no systematic relation between age and attitude stability for any of these separate categories of attitude object. There are two categories for which the oldest age group appears to be marginally different from the others, but these results contradict each other. In the case of attitudes toward social groups (13 items) the oldest age groups seems to be less stable than others, whereas in the case of racial attitudes (two items) stability is highest in the oldest age group. There is some support for the symbolic-attitudes hypothesis with respect to the impressionable years, in that, for parties and candidates, the average stabilities for the youngest age groups are clearly the lowest. These differences, while clearly present, are not judged to be statistically significant. We performed a test for statistical interaction in the patterns depicted in table 2, which revealed no significant interaction between attitude object and age in affecting the level of attitude stability ($F = .78, P = .91$).

AGING AND STABILITY—THE CASE OF PARTY IDENTIFICATION

The previous analyses refer only to cross-sectional stabilities and do not take into account the historical conditions that may affect attitude stability. In that analysis we pooled estimates across the two NES panel studies and examined differences in stabilities by age category. And because the age categories in a given panel were all observed on the same occasions, there is no possible distinction there between cohort effects and aging

11 In some instances the average levels of stability for a particular age category exceed unity, the expected upper limit of such stability coefficients. However, such results can occur by chance, especially if the true level of stability is near unity. In all cases 1.0 is well within the standard errors for the estimated coefficients. In other instances these results may reflect the inapplicability of the simplex model employed here, but we have tried to exclude items for which we concluded this was true. Whatever the case, coefficients that exceed unity are interpreted as reflecting high levels of stability.
effects on stabilities. In other words, the stability estimates summarized above are essentially cross-sectional in nature, and they confound aging processes and cohort processes. A stronger test of our hypotheses would involve the analysis of cohort-specific stability levels at different ages.

Fortunately for our purposes, there was one question included in both the 1950s and 1970s NES panel studies—the seven-point party identification scale based on a standard series of questions in the election studies—for which we may derive intracohort comparisons over the two studies. It has been used to measure two somewhat different concepts. One is the directional component taken by itself; that is, does the person identify with one of the two major parties, or is he or she neutral or independent? The second is the intensity of party loyalty or how strongly the person identifies with one of the two major parties, given that they identify with either.

The analysis of the stability of the intensity component is not straightforward. Following Converse (1976), we define intensity within the directional partition of Democrat/Republican, that is, the degree of identification with either party. We assessed intensity of party identification by using the absolute score of the party identification scale, equating 1 and 7, 2 and 6, and 3 and 5. In some cases this variable has uncertain meaning in the analysis of individual change, since a person might change from 3 to 5 in the course of time, or from 2 to 6, or even from 1 to 7, and all such changes would be registered as no change if Converse’s measure of attitude intensity were used. While the use of such a variable is entirely appropriate in the cohort analysis of aggregate changes in the intensity of partisanship, it is not appropriate in the analysis of individual change. To remedy this minor problem, we simply let persons who

12 The failure to replicate more of the 1950s questions in the 1970s is unfortunate because it limits the possibilities for the type of analysis we perform here. There was a second question about the respondent’s attitude toward the federal government’s providing employment for all citizens. Unfortunately, the 1956-1958-1960 series measured this attitude using a five-point “agree-disagree” scale, whereas the 1970s series assessed it using a longer question introduction and a seven-point rating scale. We examined the comparison of the results, but because of the question difference between these two series, the stability estimates were ambiguous. Still, for many political attitudes the relevant social issues change, and it is not possible to replicate questions over time (e.g., see Alwin et al. 1991).

13 The variable is scored as follows: 1 = strong Democrat, 2 = weak Democrat, 3 = independent-leaning Democrat, 4 = independent, 5 = independent-leaning Republican, 6 = weak Republican, and 7 = strong Republican. “Don’t know,” “other,” and “uncertain” responses were omitted from the analysis.

14 The directional component is assessed by means of a binary variable representing “Democrat” and “leaning Democrat” on the one side and “Republican” and “leaning Republican” on the other. “Independents,” “other,” “don’t know,” and “uncertain” are omitted from the analyses of the stability of the directional component.
changed parties over time be absorbed into the zero point at the destination time.15

Table 3 presents standardized and unstandardized estimates of true attitude stability over two years of these three measures for all age categories in the 1950s and 1970s NES panels.16 There are several ways to evaluate the differences among the stability coefficients in this table. When comparing different age groups or comparing the same cohorts over time, it is most appropriate to examine differences in unstandardized stability coefficients, although there is some utility in comparing the standardized coefficients as well (see Alwin 1988b). When comparing the processes as they may develop differently across aspects of the party-identification variable, specifically direction versus intensity, the standardized coefficients are somewhat more helpful, as they control for the differing units of measurement involved.17

These results indicate that the stability of party identification increases with age in both of the panel data sets and decreases in the oldest age group. In most comparisons, the youngest age group is significantly lower in the stability of both direction and intensity of party identification, and, in all cases, these levels of stability increase regularly from the youngest group through midlife. In a few comparisons there is a decline in the level of stability in old age, but this is primarily reflected in the measures of the intensity of party loyalty. These results contradict the “average” result, taken over all available attitude measures, that we show in table 1. That is, attitude stability in the directional (i.e., Democratic vs. Re-

15 This actually happened in only a small number of cases, and we do not believe it detracts from our analysis of intensity in any significant way. We are grateful to an anonymous reviewer for suggesting this analysis.

16 Table 3 presents estimates based on the Wiley and Wiley (1970) approach. The standardized results for this model are virtually identical with those obtained by the Heise (1969) approach, so we present only one set of results here. Thus, our results do not depend in any way on the possible weaknesses of the Heise model. We present both standardized and unstandardized results for the Wiley and Wiley model, so that all possible types of comparisons over age groups and time points may be entertained. We examined both the averaged two-year stabilities (presented in table 3) and four-year estimates. The same conclusions were reached with each set of numbers, although we present only the average two-year estimates here.

17 We tested the statistical significance of the within-cohort differences in table 3 using a test of the significance of differences between two regression coefficients (see Cohen and Cohen 1983). Such tests use Fisher’s z-distribution to indicate whether two independent regression coefficients are significantly different. If various comparisons of coefficients exceeded one-and-one-half the pooled standard error, they are so indicated as different in table 3. There are alternative strategies for comparing the coefficients across age groups, such as multiple-group analysis in LISREL. However, given the various types of comparisons we wish to make, this statistical test seemed more than warranted.
TABLE 3
AVERAGE TWO-YEAR STABILITY OF PARTY IDENTIFICATION, DIRECTION OF PARTY IDENTIFICATION, AND INTENSITY OF PARTY IDENTIFICATION: WILEY AND WILEY ESTIMATES

<table>
<thead>
<tr>
<th>COHORT CATEGORY</th>
<th>AGE IN 1956 (n)</th>
<th>AGE IN 1972 (n)</th>
<th>UNSTANDARDIZED COEFFICIENT</th>
<th>STANDARDIZED COEFFICIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Party Identification</td>
<td>Republican</td>
</tr>
<tr>
<td>1</td>
<td>18–25 (199/147/199)</td>
<td></td>
<td>.834</td>
<td>.838</td>
</tr>
<tr>
<td>2</td>
<td>26–33 (221/151/221)</td>
<td></td>
<td>1.087*</td>
<td>988*</td>
</tr>
<tr>
<td>3</td>
<td>18–25 (93/67/93)</td>
<td>34–41 (185/135/185)</td>
<td>834 (.078)</td>
<td>973* (0.053)</td>
</tr>
<tr>
<td>4</td>
<td>26–33 (223/174/223)</td>
<td>42–49 (196/151/196)</td>
<td>.872 (.050)</td>
<td>967* (0.048)</td>
</tr>
<tr>
<td>5</td>
<td>34–41 (234/188/234)</td>
<td>50–57 (163/139/163)</td>
<td>997* (0.043)</td>
<td>973 (.055)</td>
</tr>
<tr>
<td>6</td>
<td>42–49 (181/149/181)</td>
<td>58–65 (137/104/137)</td>
<td>1.012 (.062)</td>
<td>974 (.075)</td>
</tr>
<tr>
<td>7</td>
<td>50–57 (132/106/132)</td>
<td>66–83 (157/134/157)</td>
<td>992 (.043)</td>
<td>.924 (.055)</td>
</tr>
<tr>
<td>8</td>
<td>58–65 (100/81/100)</td>
<td></td>
<td>1.054 (.077)</td>
<td>.987 (.053)</td>
</tr>
<tr>
<td>9</td>
<td>66–83 (98/87/98)</td>
<td></td>
<td>939* (.044)</td>
<td>.974 (.040)</td>
</tr>
</tbody>
</table>

Note.—Standard errors are in parentheses.

* Indicates coefficient is different from the coefficient above it (P < .10).
† Indicates coefficient is different from the coefficient to its left (P < .10).
Stability of Orientations over the Life Span

publican) component grows with increasing age and does not appear to change in old age. By contrast, the stability of the attitude-intensity component of party identification seems to grow with age up to a point of relatively high persistence, and then its strength may decline in old age. And as this component becomes weaker, presumably there will be a greater change.

We can get an even better purchase on the attitude-stability relationship with aging by comparing stability estimates obtained for the same cohorts at different times. In order to do this, we have to assume period influences are not affecting these stabilities and that differences reflect processes of aging, net of cohort.18 The results in table 3 indicate that in virtually all of the available comparisons, there is an increase in stability over the 16-year period studied, up until the age range 34–41, at which time the average two-year stabilities become generally high and remain constant thereafter. The major exception to this is that in the 65 and older age ranges, stability of the party-identification variable declines, presumably owing to the weakness of the intensity component. These patterns almost perfectly corroborate Sears's (1981, p. 199) speculation about there being a secondary period of increased susceptibility to attitude change in late adulthood. By contrast, for the directional component, once a high level of attitude stability is achieved, it seems to remain relatively persistent.19

If we take these results as valid with respect to inferences about aging and increases in the strength of partisan attitudes, that is, if we can infer from our estimates of magnitudes of true attitude change something more substantial about attitudes, namely their strength, then these results generally support the types of inferences made about life-cycle patterns of attitude strength made by Converse (1969, 1976).20 The major difference involves the suggestion in the present set of data that the strength of the intensity component of attitudes may decline in old age.

18 There is an obvious confounding of period with age in these analyses. Unfortunately, there are only two time periods represented in our data, each of which may have some unique influence on the patterns of stability we observe. However, given the types of life-cycle patterns predicted by our model, it is hard to imagine how this would have been produced by some kind of period effect. The average level of stability in the total sample at each point in time is absolutely constant—cf. .966 with .966.

19 We may be venturing a bit far from the statistically significant differences in table 3. With respect to the declines in the stability of the intensity component in the oldest age groups, the key differences, while very apparent in the data, do not reach significance levels at even somewhat generous levels of significance.

20 One may argue that these results generally support the conclusions of Converse (1976) but that the data on which Converse based his conclusions do not assess attitude strength but instead measure the tendency to express "extreme" attitudes. Growing attitude extremity with age, which Converse's results may reflect, is another matter.
Cohort Effects versus Life-Cycle Effects on Stabilities

In order to clarify the trajectories of partisan stability over the life span, it is necessary to compare the age-constant stabilities of our central measures of partisanship (table 3). These comparisons reveal an amazing degree of similarity in the trajectories of attitude stability over the life course in the two sets of panel results, which suggests a life-cycle patterning in these processes. The major exception involves the level of stability for the 26–33 age group in the two panel studies—this group had virtually perfect stability in the 1972–76 panel data.

This exception may represent a unique cohort effect on attitude stability, reflected in its departure from the general pattern of partisan stability over the life course. It exists in the partisan attitudes of the cohort born 1939–46, who were 26–33 in the early 1970s. This cohort came of age during the 1960s, one of the most turbulent periods in recent political history, experiencing their 18th through 20th years between 1957 and 1966. It seems likely that this cohort may have entered the 1970s with highly crystallized political orientations, with attitude stabilities that, somewhat prematurely, achieved the highest possible level when they were 26–33 years old during the early 1970s.

Despite this important and interesting exception, our main results lead us to emphasize life-cycle factors in the development of sociopolitical attitudes over the life course. This emphasis, while recognizing the tendency throughout most of adult life for attitudes to become crystallized and to persist over time, also recognizes the differences in patterns of attitude stabilities at critical periods of the life cycle that are characterized by a higher-than-average number of changes in social life. The periods of youth and old age are both characterized by higher frequencies of major disturbances in one’s social networks, living arrangements, family relationships, and work life (Glenn 1980; Wilensky 1981). Thus, we would attribute the higher levels of attitudinal instability to factors that vary within cohorts (see Alwin et al. [1991] for further discussion of this issue).

DISCUSSION

We began this article by suggesting that young adulthood is a period of the greatest flexibility in attitudes and that attitudes continue to grow in strength with age, becoming increasingly fixed and resistant to change over biographic time. In past research the concept of attitude strength has been conceived of and empirically addressed in various ways. The analytic strategy we used in this investigation represents an improvement over previous approaches in many respects. First, we have defined the
strength of attitudes in terms of their openness or resistance to change over time and have developed these ideas within the framework of a statistical model for estimating the degree of over-time stability in attitudes. Second, we have used methods that have permitted us to estimate parameters of stability as a quantity separated from reliability of measurement. Specifically, our methods separated instability in the latent-attitude variable from unreliability of measurement—the two sources of attenuation in over-time covariance relationships. This is important in the comparison of stability levels across age groups, which have been known to differ in attitude-reporting reliability. Third, instead of using multiple-indicator structural-equation models, we have used single-indicator models. The validity of our conclusions thus does not depend on the assumption that a set of indicators is congeneric, that is, that a set of measures have perfectly correlated true scores (see Jöreskog 1978; Alwin and Jackson 1979). Fourth, our methods are an improvement on those used in past studies because we have looked at a variety of different types of sociopolitical orientations, including policy attitudes, racial attitudes, attitudes toward other social groups, measures of political efficacy, and the more ideological self-assessments obtained from measures of party identification, candidate preferences, and liberal-conservative ratings. Moreover, our analysis has permitted us to differentiate between the direction and intensity components of changes in partisan attitude strength over the life span. Finally, our analysis goes beyond previous research by comparing the same birth cohorts over time with respect to estimated stability of partisan orientations.

Age and the Stability of Attitudes

Taken in the aggregate our measures provide little support for a conclusion that a systematic relationship exists between aging and attitude change. However, our results for the party-identification measures tell a different story. These results provide strong support for the impressionable-years hypothesis, which asserts that people are highly vulnerable to shifts in attitudes during young adulthood. Those results also provide strong support for the view that attitude stability increases with age. This increase appears to occur immediately following early adulthood, and attitude stability appears to remain at a constant, high level throughout the remainder of the life cycle. This finding that attitude stability increases with age is consistent with considerable other research that has explored the relation between political-attitude stability and age (Alwin et al. 1991; Glenn 1980; Jennings and Markus 1984; Jennings and Niemi 1981; Markus 1979; Sears 1981). The main focus of this previous research has been political party identification, a highly symbolic attitude. It is
therefore no surprise that these studies found evidence of increased attitude stability after young adulthood. Had they focused on less symbolic attitudes, as our evidence suggests, they would not have found such a relation. This evidence also parallels the findings of previous studies that have examined the relation of age to other aspects of political behavior. For example, Wolfinger and Rosenstone (1980, p. 48) found that the likelihood that a given individual will vote in a national election increases with age. Thus, it seems that attitudes and behavior that are central to politics increase in frequency and in crystallization with age.

Our results also have some relevance to Sears's (1983) claim that attitude stability declines in old age. In our multi-item analyses, we saw no clear and statistically significant evidence of such a decline. In our detailed analysis of party identification, the stability estimates we generated did show an age-related decline in the stability of the intensity component. While this decline was not statistically significant, it was clearly suggested in both the 1950s and 1970s panel data. However, when we tracked cohorts, the results revealed no statistically significant declines in stability in the oldest birth cohorts, and the evidence for a decline in stability is suggestive in only the 1970s panel. A conservative approach to these results would reject the claim that the stability of attitude intensity declines toward the end of the life cycle. An alternative view is that, while it is conceivable that such a decline does occur, we lack the statistical power to detect it.

Life-Cycle versus Cohort Interpretations

Our synthetic cohort analysis showing a cross-sectional relation between age and attitude stability was, while not statistically significant, certainly consistent with the impressionable-years hypothesis. This relationship is, however, subject to a number of alternative explanations. Most important, it is well-known that what, in cross-sectional analyses, appear to be relations with age could actually represent inherent differences between birth cohorts that persist throughout the life cycle. However, our detailed analysis of party identification provides a strong basis for ruling out this alternative explanation. In this analysis, we were able to track the same birth cohorts over a 16-year period to examine changes in their levels of attitude stability. And we found that the youngest birth cohorts did reveal increases in attitude stability, while there were no such increases for older birth cohorts. Because these increases in stability were clearly confined to only two of the five birth cohorts we tracked, they cannot be explained by period effects, which would be expected to appear in all birth cohorts. In this sense, our cross-sectional and longitudinal
results complement each other and together provide support for the aging-stability hypothesis.

As we noted, the literature on the relation of age to attitude strength has conceived of this construct in a variety of different ways, as indicated by attitude stability and as indicated by attitude intensity or extremity. Our analytic approach allowed us to go a step further: to examine the relationship of age to the stability of intensity. Converse's (1976) analysis of the intensity of party identification suggested that it increases precipitously early in adulthood and increases much more gradually throughout the remainder of the life cycle. This suggests that intensity grows more stable after early adulthood, a claim confirmed by our analysis of the intensity component of party identification. However, our estimates of the life-cycle stability of the intensity of partisan attitudes suggests that there may be greater amounts of change in attitude intensity in old age.

Symbolic versus Nonsymbolic Orientations

Our finding that, for highly symbolic attitudes such as party identification, age is related to attitude stability but that this is not true for less symbolic attitudes is both reassuring and troubling for the symbolic-attitudes literature. Our result is reassuring in that it confirms that literature's claim that symbolic attitudes differ from nonsymbolic attitudes in their nature and functions. However, the symbolic-politics theory (Sears 1981, 1983) argues that symbolic attitudes are crystallized very early in life and remain highly stable thereafter, whereas nonsymbolic attitudes are highly flexible and susceptible to change throughout the life course. This would imply that symbolic attitudes should achieve a level of stability that exceeds that of other attitudes. However, this was not true for our data. Even at their highest stability levels, symbolic attitudes were no more stable than nonsymbolic attitudes. And, indeed, among the youngest age group in our analysis, the highly symbolic attitudes were less stable than all the other three categories of attitudes. This suggests that the differences between symbolic and nonsymbolic attitudes should probably be reconceived. However, we are reluctant to offer a reconceptualization until further solid evidence testing the various claims of this theory is available.

Caveats about Methodology

We do not wish to suggest, though, that the results reported here are necessarily the last word on the relation of age to attitude stability. Separating test-retest covariance structures into components that are due to
stability and those that are due to unreliability is an inherently tricky business. We should therefore be cautious about the validity of our conclusions in this regard. Although our approach clearly represents a substantial improvement over previous efforts, the structural-equation model we used does make certain assumptions that may or may not be valid. For example, the model assumes that attitude change occurs according to a simplex process (Alwin 1988a), and some skepticism has been expressed about this assumption (Rogosa 1988). However, a careful review of our test-retest covariance matrices revealed that virtually all of them had a simplex structure; therefore, we are not particularly troubled by this assumption. The model also assumes that measurement-error variance remains constant across repeated interviews, which may or may not be the case. For example, a Socratic effect may produce a decrease in random-error variance across waves of a panel survey (Jagodzinski, Kühnel, and Schmidt 1987; but see Saris and van den Putte 1988). However, the error variances generated by our estimation method are essentially averages computed across the three interviews, which can be reasonably compared across age groups even if the assumption of constant-error variance is violated.

Although these assumptions do not seem problematic, the model does make other assumptions that may be untenable and that may complicate a clean separation of stability from unreliability. For example, the model assumes that there is no correlated measurement error across interviews, and violation of this assumption would lead to inappropriately low estimates of unreliability (although not inappropriate estimates of random measurement error; see Alwin 1989). We therefore await the development of more effective analytic techniques or the collections of multiwave-panel data sets that will eliminate the necessity of making these assumptions. In the meantime, though, the method we have used here seems clearly the best available for accomplishing our goals. Furthermore, the strongest results presented here are consistent with very strong bodies of theory on sociopolitical orientations and on the effects of aging. Thus, the validity of our conclusions seems likely to be substantial. Nonetheless, we look forward to future research in this area.

REFERENCES

Stability of Orientations over the Life Span

American Journal of Sociology

Stability of Orientations over the Life Span

