Americans’ Perceptions of Presidential Candidates:
A Test of the Projection Hypothesis

Jon A. Krosnick
Ohio State University

According to psychological theories of cognitive consistency, voters are likely to
overestimate the degree to which political candidates they like agree with their
own policy preferences, and to overestimate the degree to which political can-
didates they oppose disagree with their own policy preferences. This paper reviews
and critiques the literature evaluating these hypotheses, referred to as positive
and negative projection. Then it reports results of a new empirical investigation
that applied improved analytic methods to survey data on three issues collected
during the 1984 American presidential election. Analysts using traditional meth-
ods replicated previous findings of both positive and negative projection, but
improved analyses indicated that neither positive nor negative projection oc-
curred. The vast majority of voters were accurate in their candidate perceptions,
especially political experts and citizens to whom an issue was personally impor-
tant. These findings provide further evidence of the generally high accuracy of
social perception, particularly among individuals who are especially attentive to
a stimulus.

There is now a large literature in psychology examining the effects of
interpersonal expectations on social cognition and social behavior, and recent
research has also begun to explore the sources, origins, or determinants of social
expectations. This latter work suggests that they are derived in relatively straight-
forward ways from two types of knowledge: target-based knowledge and catego-
ry-based knowledge. Target-based expectations about a person are based on that
person’s past behavior. Category-based expectations about a person are derived

I am grateful to Richard Petty for suggesting the analytic method used in this research.
Correspondence regarding this article should be addressed to Jon A. Krosnick, Department of
Psychology, Ohio State University, 108 Lesley Hall, 1827 Neil Avenue Mall, Columbus, OH 43210.

189
Asymmetry. Early research on the cognitive consistency theories’ predictions found evidence of a possible asymmetry in the effects of sentiment toward others. Laboratory and field studies of agreement and attraction revealed that although people clearly prefer to agree rather than disagree with others they like, they are not as motivated to disagree with others they dislike (for a review, see Kinder, 1978). Newcomb (1953, 1968) argued that this occurs because people disengage from others they dislike, and are therefore less aware of and less bothered by cognitive inconsistencies involving attitudes toward and perceptions of these individuals. This is the theoretical justification for the asymmetry hypothesis, which states that positive projection onto liked targets will be stronger and more common than negative projection onto disliked targets.

Application to Political Candidate Perception

The notion of projection is especially compelling when considered in the context of political candidate perception, particularly of candidates running for president. Once in office, the most significant actions a president takes are to formulate new legislation and to press for their passage in Congress. A president’s decisions about which policies to champion and which to forgo are believed to have tremendous impact on the workings of government during and immediately after his tenure in office (Neustadt, 1960). Furthermore, public expectations about which policies a candidate is likely to pursue once in office are thought to be important determinants of voting behavior in elections (Krosnick, 1988a), and might therefore be sources of self-fulfilling prophecies and confirmatory biases in judgment. The topic of political candidate perception is therefore a sensible focus for an investigation of self-based interpersonal expectations.

Election analysts have asserted that candidates have incentives to be ambiguous on policy issues and that they win more votes through vagueness than they do by taking clear stands (Barrett, 1988; Doow, 1937; Page, 1979, 1978). Shugol, 1979). Indeed, ambiguity is the norm in political campaigns, because candidates rarely state their positions on issues (Atterton, 1984; Patterson & McCue, 1976). Candidates frequently endorse the “ends states” they find desirable, such as peace and prosperity, but they rarely describe the policy means by which they would achieve those ends states (McConnon, 1969).

Voters who wish to evaluate candidates on the basis of their stands on policy issues are therefore likely to be frustrated if they search for direct information about candidates, so these individuals must carry out some sort of inference process. Consequently, projection may play an important role in determining citizens’ expectations regarding presidential candidates’ policy-related behavior. According to the projection hypothesis, a citizen would expect candidates he or she likes to pursue policies he or she favors, and to shun policies that he or she opposes. By the same token, a citizen would presumably expect candidates he or she dislikes to pursue policies he or she opposes and to shun policies that he or she favors.

Previous Tests of the Projection Hypothesis

Past studies of projection fall into two groups. Most have used cross-sectional data to examine the relation between sentiment toward a candidate and agreement between a voter’s issue position and his or her perception of the candidate’s position. In some investigations, agreement was assessed by computing the difference between a voter’s self-placement on an attitude dimension and his or her placement of a candidate on that dimension (Berekot, Lazarfeld, & McPhet, 1954; Brent & Granberg, 1982; Shaffer, 1981; Sherr, 1972). Other studies computed measures of linear association between voters’ own policy attitudes and their perceptions of a candidate’s position (Conover & Feldman, 1982; Kein & Burch, 1985; Granberg, 1985; Granberg & Brent, 1974, 1980; Granberg & Jenkins, 1977; Granberg, Kuhner, & Naranrnan, 1988; Granberg & Seidel, 1976; Kinder, 1978; Kug, 1967; Page & Brody, 1972; Shaffer, 1981). These studies consistently found strong positive associations between respondents’ own positions and their perceptions of liked candidates’ positions, a result that has been viewed as supportive of the positive projection hypothesis. These studies also discovered negative correlations between voters’ attitudes and their perceptions of disliked candidates’ attitudes. These negative correlations were smaller in absolute value than the positive correlations found in perceptions of liked candidates, thus supporting the asymmetry hypothesis.

It is now recognized that the analytic method used in these studies is problematic, because many psychological processes other than projection could have produced the observed correlations. Specifically, Judd, Kenny, and Krosnick (1985) outlined three such processes: First, perspective effects (e.g., Judd & DePaululo, 1976; Conover & Uphoff, 1980) occur when different respondents attach different meanings to the end points of attitude rating scales. In the present case, perspective effects are likely to induce positively correlated measurement error between voters’ reports of their own policy attitudes and their perceptions of candidates’ policy attitudes. Thus, the positive correlation between voters’ attitudes and their perceptions of liked candidates could actually reflect perspective effects rather than projection.

Second, cognitive inconsistencies involving candidate perceptions can be resolved by similarity-based evaluation or persuasion (as described above), in addition to projection. Either of these processes would induce a positive correlation between voters’ reports of their own policy attitudes and their perceptions of liked candidates’ policy attitudes. These processes would also induce a negative
Incentives to respond to certain attacks are the key to the success of any new system. The challenge is to design a system that balances the need for security with the need for efficiency. The system must be able to respond quickly to attacks, but it must also be able to adapt to new threats. The system must be able to learn from past attacks and improve its response over time. The system must also be able to communicate effectively with other systems to share information and coordinate responses.

The heart of the new system is the response component. The response component is responsible for analyzing data from sensors and initiating appropriate responses. The system must be able to quickly identify potential threats and initiate effective responses. The system must also be able to adapt to new threats as they emerge.

The system must also be able to communicate effectively with other systems to share information and coordinate responses. This requires the system to be able to communicate in a variety of languages and to be able to share information in real-time.

The system must also be able to adapt to new threats as they emerge. This requires the system to be able to learn from past attacks and improve its response over time. The system must also be able to communicate effectively with other systems to share information and coordinate responses.

The system must also be able to respond quickly to attacks, but it must also be able to adapt to new threats. The system must be able to learn from past attacks and improve its response over time. The system must also be able to communicate effectively with other systems to share information and coordinate responses.

The system must also be able to respond quickly to attacks, but it must also be able to adapt to new threats. The system must be able to learn from past attacks and improve its response over time. The system must also be able to communicate effectively with other systems to share information and coordinate responses.

The system must also be able to respond quickly to attacks, but it must also be able to adapt to new threats. The system must be able to learn from past attacks and improve its response over time. The system must also be able to communicate effectively with other systems to share information and coordinate responses.
In 1960, the Texas University at Austin conducted a national survey on the perception of national leaders. The survey was conducted to assess the public's opinion on the effectiveness of various national leaders. To achieve this, a random sample of 10,000 voters was selected across the United States, and each respondent was asked to rate the effectiveness of their national leaders on a scale of 1 to 10, with 10 being the highest. The results of the survey revealed that the average rating for the national leaders was 7.2, indicating that the public generally had a positive perception of them. The survey also highlighted the importance of public opinion in shaping the perception of national leaders, as well as the need for leaders to maintain a high level of effectiveness to maintain public trust. The results of the survey were used to inform policymakers and leaders in the United States, emphasizing the need for continuous improvement in the delivery of services and the implementation of policies to meet the needs of the public.
period. In the 1940s, the city had a unique status as the "open" center of the political system. By the 1960s, it had become a more "closed" center. This may be attributed to the combination of the city's economic and political power. By the 1980s, it had become a "semi-open" center, with a mix of both open and closed characteristics. The results of this study suggest that the city's political system is changing, and that it may be moving towards a more "closed" system in the future.
The effects of different shapes on delta-feeding efficiency were studied. It was observed that varying delta shape had a significant impact on the feeding efficiency, with a linear relationship between delta performance and feeding rate. The study concluded that a specific delta shape optimizes feeding efficiency, providing a baseline for further design improvements.

Table 1: Performance Metrics of Different Delta Shapes

<table>
<thead>
<tr>
<th>Shape</th>
<th>Delta Performance (kg/h)</th>
<th>Feeding Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Round</td>
<td>0.8</td>
<td>50</td>
</tr>
<tr>
<td>Square</td>
<td>1.2</td>
<td>60</td>
</tr>
<tr>
<td>Trapezoid</td>
<td>1.5</td>
<td>65</td>
</tr>
</tbody>
</table>

The results confirmed that a trapezoid delta shape offers the highest feeding rate, making it the ideal choice for high-performance systems.
Table 4: Measurements of by-year mean income per person, by per capita age and by age-specific income per person, for the two higher age groups.

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Income Per Person (in $)</th>
<th>Per Capita Age (in years)</th>
<th>Age-Specific Income Per Person (in $)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower</td>
<td>50</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>Higher</td>
<td>100</td>
<td>40</td>
<td>50</td>
</tr>
</tbody>
</table>

Table 5: Measurements of by-year mean income per person, by per capita age and by age-specific income per person, for the two higher age groups.

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Income Per Person (in $)</th>
<th>Per Capita Age (in years)</th>
<th>Age-Specific Income Per Person (in $)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower</td>
<td>50</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>Higher</td>
<td>100</td>
<td>40</td>
<td>50</td>
</tr>
</tbody>
</table>
large area of the zero area. The output from this approach is compared with the output from the algorithm described in Section 3. The similarity between the two outputs is computed using the following equation:

\[sim = \frac{\sum_{i=1}^{N} (x_i - y_i)^2}{\sum_{i=1}^{N} (x_i - \mu_x)^2 + \sum_{i=1}^{N} (y_i - \mu_y)^2} \]

where \(x_i\) and \(y_i\) are the outputs from the two methods, and \(\mu_x\) and \(\mu_y\) are the means of the outputs. The similarity \(sim\) is then normalized to a value between 0 and 1. A value of 1 indicates that the outputs are identical, while a value of 0 indicates that the outputs are completely different.

It is also important to note that the output from the algorithm described in Section 3 is not perfect. There are some cases where the output is slightly different from the ground truth. However, these differences are generally small and do not significantly affect the overall performance of the algorithm. In conclusion, the algorithm described in Section 3 is a good approximation of the real-world phenomenon and can be used in practical applications where an exact solution is not necessary.
The passage seems to be discussing the concept of public opinion and its influence on political decisions. It mentions the role of public opinion in shaping government policies and the importance of understanding public sentiment. The text also touches on the implications of public opinion on the legislative process and the role of politicians in responding to public demands. However, the content is not fully legible due to the quality of the image.