Attitude Importance and Attitude Change

Jon A. Krosnick

The Ohio State University

Received October 28, 1986

This study tests the hypothesis that attitudes people consider to be personally important are more stable over relatively long periods than are attitudes people consider unimportant. Latent variable structural equation models are applied to political attitude data collected during the 1980 and 1984 American presidential election campaigns. These analyses support the claim that important attitudes change less over time than unimportant attitudes. The lower over-time consistency of reports of unimportant attitudes was found to be due to true attitude change and not to reduced motivation to report these attitudes carefully or to greater ambiguity in internal attitudinal cues associated with them. © 1988 Academic Press, Inc.

The dynamics of attitude change have been core issues in social psychology for more than 50 years (see, e.g., McGuire, 1985). Empirical studies in this area have focused primarily on the influence of persuasive communications and have identified numerous aspects of the source, message, and recipient that regulate this impact. In contrast, relatively little attention has been devoted to studying features of attitudes that regulate their susceptibility to change. This study is concerned with one such feature, the degree to which an individual considers an attitude personally important.

There are a number of reasons why attitudes people consider important should be particularly resistant to change. First, these attitudes are thought to be extensively linked to other attitudes, beliefs, values, and other psychological elements through a network of associations in memory

A previous version of this paper won the 1984 Phillip Brickman Memorial Prize and the 1984 American Association for Public Opinion Research Student Paper Award and was presented at the American Association for Public Opinion Research Annual Meeting, Delavan, WI, May 17–20, 1984. The author wishes to thank Duane F. Alwin, Philip E. Converse, Anthony Greenwald, Charles M. Judd, Lee J. Jussim, Donald R. Kinder, Ziva Kunda, Michael A. Milburn, Howard Schuman, Carolin Showers, and Robert B. Zajone, who provided helpful advice. Reprint requests should be addressed to J. A. K., Department of Psychology, The Ohio State University, 404C West 17th Ave., Columbus, OH 43210.

(Received, Turner, & Converse, 1965), and these elements exert stabilizing forces (Ostrom & Brock, 1969). Second, important attitudes are accompanied by relatively large stores of relevant knowledge in memory (Howard-Pitney, Borgida, & Omoto, 1986; Wood, 1982), which equip individuals to counterargue against attitude-challenging information. Third, people are attracted to and associate with others with whom they agree in terms of attitudes they consider important (Byrne, 1971; Tedin, 1980), so these attitudes are reinforced by social support. Finally, people are especially likely to commit themselves publicly to attitudes they consider important (Krosnick, 1986; Schuman & Presser, 1981, p. 242), which increases their resistance to change (Hovland, Campbell, & Brock, 1957). For all these reasons, important attitudes should be particularly stable over long periods during the course of daily life.

In line with this hypothesis, reports of important attitudes are more consistent over long periods than are reports of unimportant attitudes (Converse, 1964; Hahn, 1970; Kendall, 1954; Schuman & Presser, 1981). However, the higher inconsistency found in reports of unimportant attitudes is not necessarily the result of attitude change, since verbal reports are imperfect indicators of the latent affective dispositions they reflect. Ambiguity in the meanings of attitude questions and in the internal cues on which people base their reports produce random measurement errors that contribute to changes in attitude reports from one occasion to the next. Therefore, greater inconsistency in reports of unimportant attitudes may be evidence of more random measurement error instead of more attitude change.

In fact, this is just how Kendall (1954), Converse (1964, 1970, 1980), and Schuman and Presser (1981) interpreted their evidence. They assumed that no attitude change took place during the course of their studies and attributed all the over-time inconsistency they observed to random measurement error. These investigators concluded that people respond more haphazardly to measures of attitudes they consider unimportant, because of either reduced motivation to make precise reports or increased ambiguity in internal attitude cues. However, because this conclusion rests on the untested assumption that no attitude change occurred, it must be accepted cautiously.

In order to appropriately test the hypotheses that more important attitudes are more stable and are reported more reliably, test–retest correlations between attitude reports must be decomposed into estimates of attitude change and measurement error. The first two studies reported below did so through the use of structural equation modeling techniques (e.g., Kessler & Greenberg, 1981; Wheaton, Muthén, Alwin, & Summers, 1977) and compared attitude change and attitude report reliability across groups differing in attitude importance. A third study used cross-sectional data to compare reliability across levels of importance.
These investigations focus on attitudes toward government policies measured during the 1980 and 1984 American presidential election campaigns, periods especially well-suited to studying changes in these attitudes. Government policies are frequent topics of discussion during campaigns, both in the national media and in personal conversations, so stimuli encouraging attitude change are plentiful. Furthermore, these stimuli do produce changes in attitudes toward government policies (e.g., Abramowitz, 1978; Page, Shapiro, & Dempsey, 1987), and we would expect attitudes people consider personally unimportant to evidence the greatest change.

STUDY 1

Method

Data

On three occasions (January/February, June, and September) during 1980, the University of Michigan’s Center for Political Studies (CPS) interviewed a representative national sample of Americans adults (N = 769) as a part of the 1980 National Election Study. During each interview, respondents were asked to report their attitudes on four issues: whether government spending on social welfare programs ought to be reduced, whether the government should concentrate on fighting unemployment or inflation, whether defense spending should be increased or decreased, and whether the United States should try hard to maintain good relations with the Soviet Union. As an example, the question regarding social welfare programs read:

Some people think the government should provide fewer services, even in areas such as health and education, in order to reduce spending. Other people feel it is important for the government to continue the services it now provides even if it means no reduction in spending. Where would you place yourself on this scale, or haven’t you thought much about this? (1 = Government should provide many fewer services; 7 = Government should continue to provide services)

Respondents were also asked the following question measuring how important each attitude was to them:

For the issue we just talked about, I see that your position on this issue (matches/comes close to/does not match) what you feel the federal government is doing at the present time. You placed yourself at point _____ and what the federal government is doing at point _____. How important is it to you that the government (continue/change) what it is doing so that it stays close/comes close to your own position on this issue? (0 = not at all important; 100 = the greatest possible importance)

1 In a study of 48 college undergraduates, the average correlation between Study 1’s importance measure and a composite of three simpler items asking respondents how important the issue is to them, how concerned they are about it, and how strong their feelings are on it was .61. This suggests that the particular importance questions used in the present studies produce reports quite similar to those produced by other wordings of the question. All questions used in these studies are shown in the codebooks for the 1980 and 1984 American National Election Studies, which are available from the Inter-University Consortium for Political and Social Research at the University of Michigan.

2 Waves 2 and 3 were chosen arbitrarily, and the cutting point of 85 was chosen in order to produce adequate sample sizes in the groups. Correlations among the importance ratings of the four attitudes examined, corrected for unreliability and shared method variance, range from .04 to .35 and average .16. Correlations between the four importance ratings and an index measuring general involvement in politics range from .00 to .16, averaging .08. It seems, then, that the importance of one attitude is essentially unrelated to the importance of another and to general political involvement (for more detail, see Krosnick, 1986a).

Model and Estimation

In order to estimate attitude change and random measurement error using these data, the model shown in Fig. 1 was used. This model is defined by two structural equations:

\[X_t = \xi_t + \epsilon_t \]

\[\xi_t = \alpha_t \xi_{t-1} + \delta_t + \theta_t \]

Equation (1) specifies the measurement model. It decomposes variance in reports (\(X_t \)), where \(t = 1, 2, 3 \) into two components, one due to the latent attitude (\(\xi_t \)) and the other due to random measurement error (\(\epsilon_t \)). Equation (2) specifies the structural model, the relationships among the latent attitudes, \(\alpha_t \), is the stability of the latent attitude during the period from \(t - 1 \) to \(t \). \(\delta_t \) represents sources of change over time in the latent attitude. This model has been discussed extensively by Heise (1969), Wheaton et al. (1977), and Wiley and Wiley (1970).

Separate estimates of the model’s parameters were computed using LISREL IV (Joreskog & Sorbom, 1978) for high and low importance respondents. Computations were done separately for each of the four attitude issues. Respondents who reported an importance score of 85 or greater at waves 2 and 3 were placed in the high importance group for that attitude (\(N = 115, 74, 167, \) and 130 for social welfare programs, unemployment/inflation, defense spending, and detente, respectively). Those who reported an importance score less than 85 at waves 2 and 3 were placed in the low importance group for that attitude (\(N = 179, 122, 172, \) and 185, respectively).

The model in Fig. 1 is underidentified: there are six pieces of information available (\(r_{11}, r_{22}, r_{33}, r_{44}, \sigma_{11}^{2}, \) and \(\sigma_{22}^{2} \)) with which to estimate eight parameters (\(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \sigma_{11}, \sigma_{22}, \sigma_{33}, \) and \(\sigma_{44}^{2} \)). To identify the model, the error variance is assumed to remain constant across waves, \(\sigma_{11}^{2} = \sigma_{22}^{2} = \sigma_{33}^{2} = \sigma_{44}^{2} \) (Wiley & Wiley, 1970). Given this constraint, the model is just-identified.

Results

The hypothesis that attitude importance is negatively related to attitude change was tested by examining estimates of the stability of each attitude from wave 1 to wave 3 (\(\alpha_{ij} \)). Shown in the first column of Table 1, these estimates suggest that more important attitudes change less. In all four cases, the stability coefficient for the high importance group is substantially larger than that for the corresponding low importance group (social welfare programs: \(z = 1.80, p = .036, \) one-tailed; unemployment/inflation: \(z = 1.52, p = .064, \) one-tailed; defense spending: \(z = 1.40, p = .081, \) one-tailed; detente: \(z = 2.04, p = .021, \) one-tailed). Although the statistical significances of these differences are not strong, it appears that unimportant attitudes changed more than important ones during the 1980 presidential campaign.
The hypothesis that attitude importance is positively related to the precision of attitude reports was tested by examining the error variance estimates (see column 2 of Table 1). Contrary to the hypothesis, the high importance group’s error variance is greater than the low importance group’s in all four comparisons (social welfare programs: $z = 0.27$, $p = .78$, two-tailed; unemployment/inflation: $z = 1.18$, $p = .24$, two-tailed; defense spending: $z = 1.65$, $p = .10$, two-tailed; detente: $z = 0.76$, $p = .45$, two-tailed). Thus, people seem not to have reported unimportant attitudes less precisely than they reported important ones.

Study 2

In an effort to replicate the results of Study 1, a second data set was analyzed using a different sample of respondents, a different importance measure, and different attitude measures. Again, the hypotheses that important attitudes are more stable and are reported more precisely were tested.

Method

Data

As a part of the 1984 National Election Study, CPS interviewed a representative national sample of American adults ($N = 1937$) once before (during September, October, or November) and once after (during November, December, or January) the presidential election. During both interviews, respondents were asked whether they thought government spending for social welfare programs should be cut and whether the federal government should guarantee all Americans a job and a good standard of living. The format of these questions was the same as that of the attitude questions used in Study 1. During both interviews, respondents also answered the following question regarding how important each attitude was to them:

How important is it to you that the federal government do what you think is best on this issue of _____? Is it extremely important, very important, somewhat important, or not important at all to you?

During the second interview, additional measures of attitudes toward social welfare programs and guaranteed employment were collected. Respondents were asked whether federal spending for social security, food stamps, Medicare, and government jobs for the unemployed should be increased or decreased or should stay the same. Responses regarding social security, food stamps, and Medicare were averaged to form a second indicator of attitudes toward social welfare programs. The government jobs item was treated as a second indicator of attitudes toward federally guaranteed full employment.

Model and Estimation

In order to estimate attitude change and random measurement error using these data, the model shown in Fig. 2 was used. This model is defined by the following two equations:

$$X_{it} = \lambda_{it} \xi + \epsilon_i$$ \hspace{1cm} (3)

$$\xi_{it} = \alpha \xi_{it} + \theta$$ \hspace{1cm} (4)

Equation (3) specifies the measurement model: variance in the ith attitude indicator at the jth wave (X_{ij}) is due to the latent attitude at that wave (ξ_i) and to random error (ϵ_i). The constant λ_{ij} is
corresponding low importance group (social welfare programs: \(z = 2.42, \ p = .008 \), one-tailed; guaranteed employment: \(z = 1.11, \ p = .13 \), one-tailed). Thus, although the statistical significance of one of these differences is not strong, unimportant attitudes seem to have changed more than important ones during the months just before and after the 1984 presidential election.

Also consistent with Study 1's results, these data do not support the hypothesis that more important attitudes are reported more precisely than important ones (see columns 2 and 3 in Table 2). Estimates of random error variance are greater for the high importance group than the low importance group in three comparisons (social welfare programs, \(\epsilon_{11} : z = 1.70, \ p = .089 \), two-tailed; \(\epsilon_{22} : z = 1.66, \ p = .097 \), two-tailed; guaranteed employment, \(\epsilon_{11} : z = 1.68, \ p = .093 \), two-tailed) and greater for the low importance group the fourth comparison (guaranteed employment, \(\epsilon_{22} : z = 0.98, \ p = .327 \), two-tailed). Thus, it seems that reports of important attitudes contain more random error than reports of unimportant ones.

STUDY THREE

In order to identify the structural equation models used in Studies 1 and 2, it was necessary to make certain assumptions about equalities of parameters. We are encouraged that the obtained results did not depend upon these assumptions since the two models made generally different assumptions yet reached the same conclusions. However, both models do share two assumptions, that the amount of variance in attitude reports due to random measurement error remains constant across waves and that the factor loadings of attitude measures on latent attitudes are constant across levels of importance. To be sure that the findings of Studies 1 and 2 are not artifacts of this assumption, we replicated the model in Study 3 using a random sample of respondents from Study 2.

TABLE 2

<table>
<thead>
<tr>
<th>Issue</th>
<th>Stability coefficient ((\sigma_{12}))</th>
<th>(\sigma_{x12}^2)</th>
<th>(\sigma_{x22}^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social welfare programs</td>
<td>.85a</td>
<td>.91a</td>
<td>.18a</td>
</tr>
<tr>
<td>High importance ((N = 329))</td>
<td>.52a</td>
<td>.53a</td>
<td>.14a</td>
</tr>
<tr>
<td>Low importance ((N = 162))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guaranteed employment</td>
<td>.80a</td>
<td>1.31a</td>
<td>.38a</td>
</tr>
<tr>
<td>High importance ((N = 298))</td>
<td>.60a</td>
<td>.60a</td>
<td>.44a</td>
</tr>
<tr>
<td>Low importance ((N = 203))</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a The high and low importance groups differ significantly (\(p < .05 \), one-tailed).

b The high and low importance groups differ marginally significantly (\(p = .13 \), one-
and 2 regarding random error variance are not contingent upon these assumptions, a third data set was analyzed (1) to test the assumption of equal factor loadings, and (2) to compare the amount of random error in attitude reports across levels of importance without assuming that they remain constant over repeated interviews.

Method

Data

In September, 1980, CPS interviewed a representative national sample of American adults (N = 1614) as a part of the 1980 National Election Study. This sample, which is completely independent of that analyzed in Study 1, responded to multiple measures of each of two different attitudes. Three questions measuring respondents’ attitudes toward the civil rights movement asked whether the federal government should work to improve the social and economic position of blacks and other minorities; whether the civil rights movement was pushing too fast, too slowly, or at about the right speed; and how warm or cold respondents felt toward civil rights leaders.

The second attitude issue dealt with the women’s movement. The interview included three questions on this topic. They asked whether men and women should have equal roles in running business, industry, and government, whether society discriminates against women, and how warm or cold respondents felt toward the women’s liberation movement.

Respondents were asked how important it was to them that the government do what they thought was best on the issues of government aid to minorities and equal roles for men and women. The importance question was the same as that used in Study 1.

Model and Estimation

The model used to analyze these data is shown in Fig. 3 and is defined by the following equation:

$$X_i = \lambda_i \xi + \epsilon_i,$$ \hspace{1cm} (5)

This equation specifies a measurement model in which variance in the ith attitude indicator, X_i, is divided into two components, one due to the latent attitude, ξ, and the other due to random error, ϵ_i. λ_i is the loading of the ith indicator on the latent attitude. Because three indicators of each attitude are available, i ranges from 1 to 3.

The model’s parameters were estimated for high and low importance groups using LISREL IV. High importance subjects were those who placed themselves between 90 and 100 on the importance scale (Minorities, N = 307, Women, N = 344). Low importance subjects were those who placed themselves between 0 and 89 (Minorities, N = 675, Women, N = 672). So that unstandardized factor loadings could be computed, λ_i was fixed at unity.

Results

These data revealed no consistent relation between attitude importance and loadings of attitude indicators on latent attitudes. In the case of women’s rights attitudes, λ_2 and λ_3 are greater in the high importance group than in the low importance group (λ_2: high importance = 0.76, low importance = 0.56, λ_3: high importance = 15.76, low importance = 9.84). The difference in the case of λ_3 is statistically significant ($z = 2.79, p = .005$, two-tailed), though it is not in the case of λ_1 ($z = 1.63, p = .103$, two-tailed). In the case of attitudes toward the civil rights movement, the factor loadings differ in the opposite direction, both loadings being greater in the low importance group (λ_2: high importance = 0.78, low importance = 1.31; λ_3: high importance = 16.53, low importance = 21.85). The difference in the case of λ_3 is statistically significant ($z = 2.91, p = .044$, two-tailed), though the difference in the case of λ_1 is not ($z = 1.29, p = .197$, two-tailed). Thus, the loadings of attitude indicators on latent attitudes do not appear to be consistently greater or less for important attitudes than for unimportant ones.

Alwin and Jackson (1981) argue that the amount of random error variance in responses from the high and low importance groups should only be compared once the factors loading coefficients are constrained to be equal across the two groups. However, because the above analyses suggest that these factor loadings may not be equivalent, the hypothesis that error variance is constant across levels of attitude importance was tested two ways, with and without λ_2 and λ_3 constrained to be constant across levels of importance.

When the lambda coefficients are constrained to be equal across the importance groups, there is no consistent relation between attitude importance and the precision of attitude reports (see Table 3). The high importance group’s error variance is greater than the corresponding low importance group’s in three cases (Civil rights, ϵ_1: $z = 1.90, p = .057$, two-tailed; Civil rights, ϵ_2: $z = 5.14, p = .000$, two-tailed; Women’s rights, ϵ_1: $z = 1.42, p = .156$, two-tailed), and the low importance group’s error variance is greater than the corresponding high group’s in the other three cases (Civil rights, ϵ_1: $z = 0.14, p = .889$, two-tailed; Women’s rights, ϵ_1: $z = 0.32, p = .749$, two-tailed; Women’s rights, ϵ_2: $z = 1.76$, two-tailed).
TABLE 3
STUDY 3: ESTIMATES OF THE AMOUNT OF RANDOM ERROR IN REPORTS OF HIGH AND LOW IMPORTANCE ATTITUDES

<table>
<thead>
<tr>
<th>Issue</th>
<th>Error variances</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>σ^2_{e1}</td>
<td>σ^2_{e2}</td>
<td>σ^2_{e3}</td>
</tr>
<tr>
<td>Civil rights</td>
<td>1.70</td>
<td>.99</td>
<td>295.07</td>
</tr>
<tr>
<td>High importance (N = 307)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low importance (N = 675)</td>
<td>1.32</td>
<td>1.01</td>
<td>240.33</td>
</tr>
<tr>
<td>Women's rights</td>
<td>2.03</td>
<td>.83</td>
<td>444.42</td>
</tr>
<tr>
<td>High importance (N = 344)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low importance (N = 672)</td>
<td>2.08</td>
<td>.93</td>
<td>360.42</td>
</tr>
</tbody>
</table>

* The high and low importance groups differ significantly ($p < .05$, two-tailed).

$p = .078$, two-tailed). When the constraint of equal factor loadings across importance levels was not imposed, the directions of the differences between the high and low importance groups in terms of error variance and the tests of the significance of those differences were equivalent. Therefore, these data encourage rejection of the hypothesis that less important attitudes are reported with more random error.

DISCUSSION

The studies reported here evaluated two hypotheses, the first of which is that important attitudes are less likely to change in the course of everyday life. This expectation received consistent empirical support across 6 comparisons; attitudes toward government policies that people considered less important were less stable during the 1980 and 1984 American presidential election campaigns. The consistency and magnitude of the observed differences suggest that they are likely to be reliable, even though the individual coefficient differences were not highly statistically significant. The second hypothesis proposes that attitude importance is positively related to the precision of attitude reports. This hypothesis was not supported; the amount of variance in reports due to random measurement error was greater for unimportant attitudes than for important ones in only 4 of 14 comparisons, significantly in only 1. Thus, the present data suggest that there is more random error in reports of important attitudes.

In order to report unimportant attitudes precisely, individuals must presumably search their memories for attitude indicators, such as recollections of past behavior (Chaiken & Baldwin, 1981), information about the attributes of the object (e.g., Fishbein & Ajzen, 1975), or cherished values (e.g., Schuman & Presser, 1981; Hartley, 1946; Bishop, Oldendick, Tuchfarber, & Bennett, 1980), and must integrate these cues into summary judgments. The expectation that reports of unimportant attitudes would contain more random error was based on assumptions that people do not invest the effort necessary to perform these cognitive processes diligently and/or carelessly select and integrate attitudinal cues into summary judgments. Since reports of unimportant attitudes contain no more random error than reports of important ones, it seems that, when reporting unimportant attitudes, people do indeed search their memories carefully and integrate the cues they find reliably into summary evaluations.

The trend in the present data indicating that reports of more important attitudes contain more random error may reflect the fact that important and unimportant attitudes are typically reported in different regions of numbered attitude scales. People for whom an attitude is unimportant tend to place themselves at the midpoint of the attitude scale (Borgida & Howard-Pitney, 1983; Brent & Granberg, 1982), the meaning of which is relatively unambiguous. Attitudes people consider important tend to be relatively intense, and individuals may have difficulty deciding whether these attitudes correspond to the most extreme points on the attitude scale or to slightly less extreme points because of ambiguity in the meanings of these scale points. This ambiguity may be responsible for the greater amount of random error in reports of important attitudes.

It is important to acknowledge that in order to estimate the parameters of the structural equation models used in Studies 1 and 2, it was necessary to assume that the variance in responses due to random measurement error remained constant over time. The conclusion that attitude importance is unrelated to random measurement error seems not to be contingent on this assumption, since the structural equation model used in Study 3 did not include it. However, the conclusion that important attitudes change less than unimportant ones must be accepted with this assumption in mind.

The literature contains no evidence indicating that the amount of random error in attitude reports changes over repeated measurements. However, it is conceivable that random error decreases as respondents gain experience using an attitude response scale. If this is the case, the error variance estimates for each importance group in Studies 1 and 2 approximate the average error variance for that group across the two or three interviews. Due to the form of the structural equation models used here, the attitude stability coefficient estimates are unlikely to be distorted by this averaging process. Therefore, the comparisons of attitude stability across levels of importance are unlikely to be biased. Nonetheless, it would be useful to compare the stability of important and unimportant attitudes using data that do not necessitate assuming constant error variances. This requires that four or more waves of data be collected from the same individuals (Werts, Joreskog, & Linn, 1971).

The studies reported here suggest that important attitudes are more
stable than unimportant ones, and it has been assumed that this occurs because attributes of important attitudes make them more resistant to change. However, the present data do not rule out an alternative possibility: people may decide how important an attitude is to them by assessing how stable it has been in recent months. Because no studies have investigated the psychological processes by which people assess the personal importance of their attitudes, it is difficult to evaluate the plausibility of this alternative explanation directly.

However, one body of evidence indicates that it is unlikely to be valid. It is well-documented that people’s memories of their own attitudes at previous times are quite poor. Whether an attitude is important or unimportant, and whether the recall time interval is a matter of minutes or years, people frequently assume that they have always held the same attitudes that they held at the moment the retrospective judgment is performed (Bem & McConnell, 1970; Goethals & Reckman, 1973; Markus, 1986; Niemi, Katz, & Newman, 1980). This suggests that if people were to infer attitude importance from recollections of attitude stability, their judgments would show little relation to actual attitude stability. Therefore, the evidence here that assessments of importance are related to attitude stability questions this alternative explanation.

The conclusion that more important attitudes are more stable has interesting implications regarding how people resolve attitude inconsistency. The intensity of the discomfort that results from such inconsistency is presumed to be a direct function of the importance of the attitudes involved; inconsistency involving important attitudes produces powerful noxious states and demands swift repair (e.g., Festinger, 1957). Since important attitudes are unlikely to change, inconsistency between an important attitude and an unimportant one is likely to be resolved by bringing the latter into line with the former. If both attitudes are equally important, the present results suggest that the inconsistency will be resolved by denial, bolstering, or other such mechanisms (e.g., Abelson, 1959). This reasoning applies equally well to the resolution of inconsistency between an important attitude and a relevant behavior (see, e.g., Sherman & Gorkin, 1980).

Finally, the evidence reported here suggests a resolution to an important controversy in political science. In 1964, Philip Converse reported that the over-time consistency of the mass public’s attitudes on government policy issues seemed to be quite low during the 1950s. His observation has significant implications for democratic theory, as summarized recently by Inglehart (1985):

Under democratic norms, public officials are supposed to implement policies that reflect the preferences of the majority of citizens, but if most citizens don’t really have any coherent or stable preferences about major political issues, why should political decision makers take them into account? Indeed, how could they?

Because of its significant normative implications, Converse’s observation sparked a lengthy debate (e.g., Achen, 1975; Converse, 1974, 1980; Inglehart, 1985; Judd, Krosnick, & Milburn, 1981; Pierce & Rose, 1974), the major focus on which has been whether Converse’s interpretation of his survey data is merited. Critics argued that over-time consistency of attitude reports is attenuated by both attitude change and random measurement error and that attitude stability can only be assessed once error is taken into account. Some went so far as to claim that once correction for attenuation due to measurement error is accomplished, the mass public’s attitudes appeared to be perfectly stable over time, thus vindicating democratic theory’s assumptions (e.g., Achen, 1975; Pierce & Rose, 1974).

The present studies suggest a more qualified conclusion. Important attitudes are indeed quite stable, even over 9 months during a presidential election campaign, but unimportant attitudes show substantial evidence of change. It would therefore be difficult for government officials to be responsive to citizens whose attitudes on a policy issue are not important to them. However, because people who consider a policy attitude important are most likely to express it to legislators directly through letters and indirectly through interest group lobbyists (e.g., Krosnick, 1986; Schuman & Presser, 1981), the attitudinal signals that policymakers receive from citizens on a particular issue are likely to be quite stable and therefore easy to respond to.

REFERENCES

